Frizzled-3a and slit2 genetically interact to modulate midline axon crossing in the telencephalon
نویسندگان
چکیده
The anterior commissure forms the first axon connections between the two sides of the embryonic telencephalon. We investigated the role of the transmembrane receptor Frizzled-3a in the development of this commissure using zebrafish as an experimental model. Knock down of Frizzled-3a resulted in complete loss of the anterior commissure. This defect was accompanied by a loss of the glial bridge, expansion of the slit2 expression domain and perturbation of the midline telencephalic-diencephalic boundary. Blocking Slit2 activity following knock down of Frizzled-3a effectively rescued the anterior commissure defect which suggested that Frizzled-3a was indirectly controlling the growth of axons across the rostral midline. We have shown here that Frizzled-3a is essential for normal development of the commissural plate and that loss-of-function causes Slit2-dependent defects in axon midline crossing in the embryonic vertebrate forebrain. These data supports a model whereby Wnt signaling through Frizzled-3a attenuates expression of Slit2 in the rostral midline of the forebrain. The absence of Slit2 facilitates the formation of a midline bridge of glial cells which is used as a substrate for commissural axons. In the absence of this platform of glia, commissural axons fail to cross the rostral midline of the forebrain.
منابع مشابه
Frizzled-3a and Wnt-8b genetically interact during forebrain commissural formation in embryonic zebrafish.
The commissural plate forms the rostral surface of the embryonic vertebrate forebrain and provides a cellular substrate for forebrain commissural axons. We have previously reported that the Wnt receptor frizzled-3a (fzd3a) restricts the expression of the chemorepulsive guidance ligand slit2 to a discrete domain of neuroepithelial cells in the commissural plate of embryonic zebrafish. Loss of Fz...
متن کاملHedgehog regulated Slit expression determines commissure and glial cell position in the zebrafish forebrain.
Three major axon pathways cross the midline of the vertebrate forebrain early in embryonic development: the postoptic commissure (POC), the anterior commissure (AC) and the optic nerve. We show that a small population of Gfap+ astroglia spans the midline of the zebrafish forebrain in the position of, and prior to, commissural and retinal axon crossing. These glial ;bridges' form in regions devo...
متن کاملNkx2.1-derived astrocytes and neurons together with Slit2 are indispensable for anterior commissure formation
Guidepost cells present at and surrounding the midline provide guidance cues that orient the growing axons through commissures. Here we show that the transcription factor Nkx2.1 known to control the specification of GABAergic interneurons also regulates the differentiation of astroglia and polydendrocytes within the mouse anterior commissure (AC). Nkx2.1-positive glia were found to originate fr...
متن کاملDev111260 4182..4193
The corpus callosum connects cerebral hemispheres and is the largest axon tract in the mammalian brain. Callosal malformations are among the most common congenital brain anomalies and are associated with a wide range of neuropsychological deficits. Crossing of the midline by callosal axons relies on a proper midline environment that harbors guidepost cells emitting guidance cues to instruct cal...
متن کاملSlit1 and Slit2 Cooperate to Prevent Premature Midline Crossing of Retinal Axons in the Mouse Visual System
During development, retinal ganglion cell (RGC) axons either cross or avoid the midline at the optic chiasm. In Drosophila, the Slit protein regulates midline axon crossing through repulsion. To determine the role of Slit proteins in RGC axon guidance, we disrupted Slit1 and Slit2, two of three known mouse Slit genes. Mice defective in either gene alone exhibited few RGC axon guidance defects, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mechanisms of Development
دوره 129 شماره
صفحات -
تاریخ انتشار 2012